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I.  Phys. A: Math. Gen. 28 (1995) 48434857. Printed in the UK 

Separating the regular and irregular energy levels and 
their statistics in a Hamiltonian system with mixed 
classical dynamics 

Baowen Lit and Marko Robnikf 
Centre for Applied Mathematics and Theoretical Physics, University of Maribor. &&ova 2, 
SLO-62000 Maribor. Slovenia 

Received 14 December 1994 

Abstract We look al the high-lying eigenstates (from the 10001 to the 13000) in the Robnik 
billiard (defined as a quadmtic conformal map of the unit disk) with the shape parameter 
I = 0.15. All the 3000 eigenstates have been numerically calculated and examined in the 
configuration space and in the phase space which-in comparison with the classical phase 
space-enabled a clear cu[ classification of energy levels into regular and irregular. This is 
the first successhl separation of energy levels based on purely dynamical rather han special 
geometrical symmetry properties. We calculate the fractional measwe of regular levels as p1 = 
0.365 rt 0.01, which is in remarkable amement with the classical estimate pr = 0.360 rt 0.001, 
This finding confim the Percival's (1973) classification scheme, lhe assumption in Berry- 
Robnik (1984) theory and the rigorous result by Lazutkin (1981, 1991). The =gular levels 
obey the Poissorian stalistics quite well, whereas the irregular sequence exhibits the fraCrional 
power-law level repulsion and globally Brcdy-like statistics with f l  = 0.286~0.001. This is due 
to the strong localization of irregular eigenstates in the classically chaotic regions. Therefore, 
in the entire spectrum we see that the Beny-Robnik regime is not yet fully established so that 
the level spacing distribution is correctly captured by the Beny-Robnik-Brody disuibution. 

1. Introduction 

In the early days of quantum chaos Percival(l973) suggested, using the semiclassical picture 
and the correspondence principle, that the eigenstates of a classically non-integrable and 
(partially) chaotic Hamiltonian system should be classified as regular or irregular, depending 
on whether they are associated with classically regular or chaotic regions in the phase space. 
In fact, he referred mainly to the sensitivity of the energy levels with respect to some family 
parameter (of a oneparameter family of Hamiltonians), by saying that in irregular levels 
the second differences (now known and studied as curvature) are typically much larger 
than in regular levels. This picture has been recently confirmed in the studies of curvature 
distribution of quantum spectra of classically non-integrable systems (Gaspard et a1 1990. 
Takami and Hasegawa 1992) where it has been finally demonstrated that here again we 
encounter universality classes (Zakrzewski and Delande 1993, von Oppen 1994a. b). 

On the other hand, the irregular levels have been assumed to be associated also 
geometrically with the classically chaotic regions in the sense of the principle of uniform 
semiclassical condensation (PUSC, see e.g. Li and Robnik 1994a, Berry 1977a. b), which 
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states that a quantal phase-spade distribution function like Wigner or Husimi, 01 anything in 
between in the semiclassical limit h + 0, uniformly condenses on the associated classical 
invariant object, which in this case is the underlying chaotic component According to the 
same principle, the regular levels are associated with the quantized invariant tori. Thus, in 
the semiclassical l i t  the entire spectrum and the associated eigenstates are decomposed in 
the regular sequence and, generally, in the many irregular sequences. More quantatively, it is 
intuitively obvious to assume that the fractional level density of each level sequence is equal 
to the fractional phase-space volume of the underlying invariant classical component, and 
this is one of the main askumptions of the Berry-Robnik (1984) theory. It is also a rigorous 
result by Lazutkin (1981, 1991) that the toms quantization in the plane classical convex 
billiards works only for states where the classical invariant ton exist and the relative measure 
of such regular states, according to him, is equal to the fractional phase-space volume of 
the classically regula regions. 

So far an inspection and separation of spectra in this sense has been performed only in 
one special case (Bohigas et a1 1990a, b, 1993), where the regular levels are characterized 
by being almost degenerate pairs due to some discrete geometrical symmeQ. It is the goal 
of our preseht paper to perform a separation of regular and irregular eigenstates on purely 
dynamical grounds in a generic system of mixed-type classical dynamics described by a 
w - t y p e  scenario, which is, to the best of OUT knowledge, the first such analysis. The 
system that we shall analyse numerically is the Rob& billiard (1983, 1984) (defined as a 
quadratic conformal map of the unit disc) with the shape parameter A = 0.15, and this work 
is a natural continuation of ow previous work (Li and Robnik 1995). 

We have calculated the 3000 eigenstates between the 10001 and the 13000 of even 
parity in configuration space ahd in the phase space, and performed the classification of states 
in compaiison with the classical dynamics (Poincark surface of section plots). After this 
separation of regular and irregular states, we have performed a complete spectral statistical 
analysis which we present in section 3. As we shall see the ingredients of the Berry- 
Robnik picture are almost completely confirmed, except for the localization phenomena in 
the chaotic states which are responsible for the deviation from GOB statistics to which ideally 
the statistics must converge in the strict semiclassical limit h -+ 0. These phenomena have 
recently been demonstrated, discussed and pda l ly  (qualitatively) explained by Prosen and 
Robnik (1994b). 

2. The preliminaries: the calculational technique and the method of analysis 

The theoretical questions that we addressed in the introduction are of course completely 
general, but in order to illustrate them we have to confine ourselves to some specific and 
possibly generic system. For such a purpose it is ideal to study billiard systems. We 
have chosen the Robnik billiard (defined as a quadratic conformal map of the unit disk 
w = z + k2) with the shape parameter h = 0.15, which is a convex plane billiard. 
This system and the conformal mapping diagonalization technique have been introduced 
by Robnik (1983, 1984) and further studied by Berry and Robnik (1986), Robnik and 
Berry (1986). Hayli et al (1987). Frisk (1990), BNUS and Stone (1994), Stone and BNUS 
(1993a, b), Markarian (1993), Prosen and Robnik (1993a,b, 1994b), Li and Robnik (1994a, 
1995) and Bzcker et al (1994). This oneparameter system (called the Robnik billiard or 
Robnik model by most workers in the field) is a nice generic system which at A = 0 is the 
integrable circle billiard, for 0 c A 4 l j 4  it is a typical KAM system (the KAM theorem 
applies because the boundary is analytic and convex), for A 114 it becomes non-convex 
and eventually for some sufficiently large A < 1/2 becomes ergodic, mixing and K-system. 

B Li and M Robnik 
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Markarian (1993) has recently rigorously proved this property for A = 1/2 (the cardiod 
billiird). Li and Robnik (1994b) have numerical evidence that ergodicity (aid mixing and 
the K property) already exists at A 2 0.2775, but could set in even earlier. More details 
about the system and the numericd technique are given in our recent papers (Li and Robnik 
1994a, 1995). 

In calculating the eigenfunctions in configuration space.we have used Heller’s me&d 
(1991) of plane wave deiomposition by applying the singular value decomposition ( h e s s  
et a! 1986). All the technical details and tricks have been described in Li and Robnik 
(1994a. 1995). The problem with missing eigenstates has been overcome by using the 
exact (double precision: 16 digits) eigenenergies for all 3000 consecutive states, from ihe 
10001 to the 13000 state. The exact energy levels have been obtained by the conformal 
mapping diagonalization technique described in detail in Prosen and Robnik (1993a). 
We have calculated the eigenfunctions in configuration space, their Wigner functions 

in phase space, also their projections onto the surface of the section, and finally also their 
Husimi type smoothed objects on the surface of the section. All the definitions, fohulae 
and the method of presentation are exactly as introduced in Prosen and Robnik (1993b), 
and later employed in Li and Robnik (1995). Therefore, and because we shall not show 
any plots of eigenfunctions in this paper, we refer the reader to those previous works. The 
quantal phase-space plots (smoothed projections of Wigner functions onto SOS) have been 
compared with the classical SOS plots for all the 3000 states. (Of course we have also 
plotted the configurational eigenfunctions, but this is not so important for the classification 
of states.) One smaller, but representative, part of this output (200 eigenstates) will be 
published separately (Li and Robnik 1994c) and is also available from the authors upon 
request. Some representative eigenstates are shown in Li and Robnik (1995). 

In spite of the vast amount of our material (altogether 2 x 3000 plots) there was no 
difficulty in classifying the eigenstates. A state is declared regular if it is localized on 
an invariant torus belonging to the classical regular region in the classical SOS. A state 
is declared irregular if it is localized (either uniformly or non-uniformly) on a classically 
chaotic region in the SOS. According to the Pusc we expect that in the strict semiclassical 
limit f r  0, or equivalently when the energy goes to infinity, the irregular states become 
uniformly extended on the classical chaotic component. However, before this limit is 
reached we ob’serve strong localization of irregular states due to the slow classical diffusion 
inside the underlying classical chaotic component. In fact the vast majority of our irregular 
states are localized chaotic states and only a few irregular states are extended chaotic. The 
consequences of such localization for the spectral statistics have been recently discussed and 
demonstrated by Prosen and Robnik (1994b). For the associated irregular level sequence 
we find the phenomenon of the fractional power-law level repulsion and globally a Brody- 
like behaviour which then approaches GOE deeper in the semiclassical limit of smaller and 
smaller effective f i .  This is confirmed again in our present paper in section 3. 

In performing the classification of states we had 109 cases, which at first sight would 
be classified as mixed states in the sense that they ‘live’ both partially in classically regular 
regions and partially in irregular regions. However a closer examination of the finer details 
of the quantal phase-space functions (by decreasing the smoothing length) led us to the 
conclusion that they should be classified as regular states. Other a posteriori reasons for 
such a decision will be described in the next section. 

It is true that our separation procedure by eye might be considered slightly subjective 
but a posteriori it has proved successful, confirming the general opinion that human eye 
is a good judge of structures and patterns. Another reason for our elementary approach 
is the fact that a machine method represents a major numerical difficulty. Nevertheless, 
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progress in this dxection has been lately reported in an application of a suitable method of 
calculating the classical-quantum overlap integrals in Prosen (1995~). 

The central result of this paper is the counting of regular and irregular states. Among 
3000 states we found 987 regular, 109 mixed and 1904 irregular states. The percentages are 
32.9%, 3.6% and 63.596, respectively. This is the result of the preliminary classification. 
With the decision mentioned before and further explained in section 3 we absorb the mixed 
states into the set of regular states (so now there are 987 t 109 = 1096 of them), which 
then results in p, = 0.365 5 0.01 for the regular states and p~ = 1 - p~ = 0.635 Lt 0.01 
for irregular states. This is in excellent agreement with the classical relative phase-space 
volume of the regular regions as calculated and reported by Prosen and Robnik (1993a) 
where p~ = 0.360 f 0.001. We believe that this is quite shiking confirmation not only 
of Percival's scheme (1973). but also of the main assumption in the Berry-Robnik (1984) 
theory of energy level spacings and more specifically of Lazutkin's rigorous results (1981, 
1991) on convex plane billiards. 

In order to get some idea about the convergence of these numerical figures with the size 
of the sample we should note that examination of an additional 1000 consecutive states, 
namely from the 13001 to the 14000 state, and the classification by the same criteria 
as above gives the result p1 = 0.360 5 0.01, which is then in brilliant agreement with 
the classical value. However, due to the statistical fluctuations all the statistical spectral 
measures do not necessarily improve monotonically as we shall comment in the next section. 

We believe that this is the 6rst detailed dynamical analysis of a large sample of 
eigenstates enabling the separation of regular and irregular states based on the classification 
procedure explained above. This successful separation of regular and irregular states makes 
it possible to analyse the statistical properties of regular and irregular sequences separately 
with the goal to confirm the aspects of the Berry-Robnik approach (1984) which is the 
subject of the next section. 

3. Statistics of energy level sequences 

The subject of the Berry-Robnik (1984) theory is the statistics of energy spectra of quantal 
Hamiltonians whose classical counterparts have mixed classical dynamics in the sense that 
classical regular regions and classical irregular regions coexist in the phase space, It is based 
on our knowledge of spectral fluctuations and their statistics in the context of quantum 
chaos (Berry 1983, Giannoni et al 1991, Haake 1991, Gutzwiller 1990, Eckhardt 1988, 
Bohigas 1991, Robnik 1994). We know that there are three universality classes of specual 
fluctuations: Poisson statistics in the classically integrable cases; in the case of classical 
ergodicity we find the G O U G E  statistics of random matrix theories depending on whether 
there is onehone anti-unitary symmetry (we ignore spin). The interesting and difficult 
case of mixed-type classical dynamics of KAM-like (generic) systems was studied for the 
first time by Robnik (1984) numerically. where a continuous transition from Poisson to GOE 
statistics in a billiard system (Robnik 1983) was found, and this work has been substantially 
revised in Prosen and Robnik (1993a). Further theoretical progress was published by Berry 
and Robnik (1984) where the following semiclassical theory of the level spacings has 
been presented. The eigenstates (their Wigner functions in phase space) are supposed to 
condense uniformly on the underlying classical invariant regions such that each of them- 
in the semiclassical limit-supports a level sequence which for itself has Poisson or GOE 
statistics if the region is regular or irregular, respectively. All the regular regions can 
be thought of as supporting a single Poisson sequence because the Poisson statistics are 
preserved upon a statistically independent superposition. The mean level spacing of such 
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a sequence is determined by the fractional phase-space volume of the regular regions. On 
the other hand each chaotic (GOE) level sequence has a mean level spacing governed by the 
corresponding fractional phase-space volume. The entire spectrum is then assumed to be 
a statistically independent superposition of all subsequences. The statistical independence 
in the semiclassical limit is justified by the principle of uniform semiclassical condensation 
of eigenstates (in the phase space) and by the lack of their mutual overlap, in consistency 
with Percival’s (1973) conjecture. Thus the problem of the statistics of the entire spectrum 
is now mathematically precisely formulated (this forms the essence of the Berry-Robnik 
approach) and its solution, as far as the level spacings are concerned, can be expressed 
in the following way. The statistical independence of superposition implies factorization 
of the gap distribution functions (Mehta 1991, Haake 1991). The probability that there is 
no level within a gap clearly factorizes upon a statistically independent superposition. The 
connection between the level spacing distribution P ( S )  and the gap distribution E(S)  is as 
follows 

dzE(S) 
dSZ 

P ( S )  = - 
and conversely 

Leaving aside the general case of infinitely many chaotic components which does not include 
anything surprisingly new let us resaict to the case of one regular component with mean level 
density pI (= fractional phase-space volume) and one chaotic component with the mean 
level density pz where p1 + pz = 1. This is already going to be an excellent approximation 
because in a generic system of a mixed type there is usually only one large and dominating 
chaotic region. Following Mehta (1991), Haake (1991) and Berry and Robnik (1984) we 
have 

where the Poissonian gap distribution EpdSIDn is 

EPoirron(S) = exp(-S) (4) 
whereas for the EWE there is no simple closed formula (for the infinitely dimensional GOE 
case) and it must be worked out by using practical approximations for PGOE  ando or EGOE 
which, for example, can be found in Haake (1991, pp 72-4). However, the two-dimensional 
GOE case (the so-called Wigner surmise) can be worked out explicitly as given in Berry and 
Robnik (1984, formula (28)), which is usually a good starting approximation. 

As for the delta statistics A ( L )  a similar procedure based on the assumption of statistical 
independence leads to the simple (additive) formula (Seligman and Verbaarschot 1985) 

A(L.) APoi smnhL. )  f A O 0 6 ( P d )  (5) 
where Apo~s&) = L/15, while for AGOE there are good approximations given in Bohigas 

The main objective of this paper is to verify the elements and aspects of the Beny- 
Robnik approach. However, before such a regime is formed in a KAM system in the ultimate 
far semiclassical limit we typically observe a quasi-universal behaviour in the spectral 
statistics which is characterized by the fractional power-law level repulsion and globally the 
adequacy of the Brcdy (1973. Brody er af 1981) distribution and of similar distributions 
such as that of Izrailev (1989). A thorough numerical study of this phenomenon has been 

(1991). 
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published recently by Prosen and Robnik (1993% 1994a,b), and will be discussed later 
on. In cases where the chaotic component becomes large (p2  M 1) and the quantal chaotic 
states strongly localized, the phenomenological Berry-Robnik-Brody dishibution proposed 
in Prosen and Robnik (1994b) can be very' efficient in capturing the global features of the 
experimental and numerical data (Lopac e t d  1992, 1594). 

As explained in section 2 we have separated 1096 regular levels from the remaining 
1904 irregular levels. Now we perform the statistical analysis of each subsequence in the 
next two subsections 3.1-3.2 and then also of the entire spectrum in subsection 3.3. 

3.1. Regular levels 

Of course, before performing the separation procedure we have carefully unfolded the 
entire specmm of 3000 levels by using the Weyl formula (with perimeter and curvature 
corrections) for even-parity states given in formula (4) of our paper (Li and Robnik 1994a). 
After extracting 1096 regular levels and calculating the (nearest neighbour) level spacings we 
have fust to normalize the empirical level spacing distribution P(S) to the unit first moment, 
i.e. such that the mean level spacing is unity. By doing this we again obtain the relative 
level density of the regular component with the value of p1 = 0.365. Having performed this 
normalization we calculate the cumulative level spacing distribution W ( S )  = l," P ( x ) d r  
and compare it with the Poisson statistics and also try to fit it with the best-fit Brody 
distribution 

(6) 

B Li and M Robnik 

W B ( S .  p )  = 1 - exp(-bS@+') b = UW + 2)/(8 + 1))18+' 
and best-fit Berry-Robnik distribution (3). The result is shown in figure 1, where we also 
show the so-called U-function introduced in Prosen and Robnik (1993a), defined as 

(7) 

in reference with the best-fit Berry-Robnik distribution. As we see the agreement of our 
numerical data with the Poissonian dishibution is reasonably good in the sense that Poisson 
is within the &lo  statistical fluctuations of the data. The best-fit Brody distribution and 
the best-fit Beny-Robnik distribution deviate slightly from Poisson: for Brody we get 
p = 0.041 f0.002, which ideally should be zero, and for Berry-Robnik we get p1 = 0.704, 
which ideally should be unity. In figure 2 we show the delta statistics for the same sequence 
of 1096 regular levels and for sufficiently small L < L,, (for L larger than L,, the 
saturation effects set in Berry (1985): in our case L,, TJ 10) we see excellent agreement 
with Poisson. The best-fit Seligman-Verbaarschot delta statistics (5) gives PI = 0.9998, 
which is surprisingly close to the ideal value unity. Thus we think that our statistical 
analysis of the regular sequence of levels clearly supports the theoretical assumptions in the 
Berry-Robnik (1984) approach. 

3.2. Irregular levels 

In analogy to the previous procedure we have extracted 1904 irregular levels and normalized 
the level spacing distribution to the unit first moment which yields & = 0.634 zk 0.002 in 
consistency with p~ = 0.365 i 0.002, such that we have unit level density of the entire 
spectrum, namely P I  + p2 = 1. The cumulative level spacing distribution for the irregular 
sequence is plotted in figure 3, where we see that it deviates from the ideal GOE distribution 
substantially and significantly. This is a consequence of the strong localization of irregular 
eigenstates on classically chaotic components demonstrated for even higher energies (ten 

2 U(W) = ; arccos m 
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I 1 
1 2 l h 5 6 7 8 9  

*lo-1 w 

Figure 1. The Emulative level spacing distribution (a)  and U-function (b) of 1096 regular 
levels. In (a) the dotted curves represent the Poisson and OOE statistics The thick curve is 
the numerical daQ while the thin w e  shows the best-fit Berr-Robr& distribution and the 
broken Cwe shows the best-fit Bmdy distribution. The best-fit parameters are pi = 0.704 and 
fl = 0.041 *0.002, respectively. In (b) we display the U-function difference U(W) - U(WBR)  
against W ( S ) .  where Ub, = U ( W B R ( s ) )  is the U-function of the best-fit Berry-Robnik 
distribution. The numerical noisy c w e s  (the average value with ?cl@ band) in (b) are compared 
with Lhe best-fit Brody distribution (broken curus) and the Poismn distribution (dotted curve). 

times larger) in Li and Robnik (1995) for the same billiard with h = 0.15, whereas the 
implications for level statistics have been demonstrated and discussed by F’rosen and Robnik 
(1994b). The best-fit Berry-Robnik dishbution yields PI = 0.374, which, however, ideally 
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5 10 15 20 25 

....................... ..................... ....)."' .................. 
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I ,,_..' ...... 

5 10 15 20 25 

L 

Figure 2. The deita statistics of 1096 regular lev& and the best-fit Seiigmm-Verbaarschot 
formula (5). The dotted curves are tho Poisson and C O 5  the thick c w e  shows the numerical 
data and the best4t Setigman-Verbmchot formula is represented by the thin cum which 
overlaps the limiting Poisso~an t L c 7.5. The vertical dashed lines indicate the region where 
the leasi-squares fit has been performed. The besbfit parameter value is pt = 0.9998 which is 
in excellent agreement with the ideal value I .  

should be zero. On the other hand, the more interesting best-fit Brody distribution captures 
the fractional power-law level repulsion with ,9 = 0.286 f 0.001, and as we see both in the 
W ( S )  as well as in the U-function plot it is globally a much better fit than Berry-Robnik, 
which is qualitatively well understood in Prosen and Robnik (1994b). If we were able to 
go to much higher energies, say 100 times higher, then the statistics of irregular levels are 
predicted to approach GOB statistics, i.e. the Brody parameter @ goes to one. 

As for the delta statistics the analysis of the data by the best-fit Seligman-Verbaarschot 
formula (5) gives PI = 0.373, which is equal to and consistent with the Berry-Robnik fit for 
level spacings, but of course is at variance with the ideal value p1 = 0. This is certainly the 
consequence of the localization effects. Having understood the reasons for the deviation of 
spectral statistics from the limiting (ash -+ 0 or equivalently as the energy goes to infinity) 
GOE statistics we may conclude that the relevant aspect of the Berry-Robnik (1984) theory 
is reconfirmed, supporting our claim that this theory is asymptotically exact theory. 

3.3. The entire spectrum 

Ideally in the strict semiclassical l i t  of sufficiently high energies we would expect the 
statistics of the entire spectrum of 3000 levels (regular plus irregular) to be described 
by the Berry-Robnik distribution (3). This prediction is based on two facts: (i) GOE 
applies for irregular levels, and (ii) regular and irregular levels are superposed statistically 
independently. Now, the first assumption is not satisfied due to the localization effects 
explained in the preceding subsection, so that instead of GOE we find in fact Brcdy with 
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5 t o  15 20 a5 30 ‘ 3 5  
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915’ 
U-Ubr 

-1 
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1 2 3 4 5 6 7 8 9  

*10-1 w 

Figure3. Thesameas f i g ”  1 butforthe 1904imgularlevels. Thebest-fitparametervaluesare 
PL = 0.374 and p = 0.286 f 0.001 for the Berry-Robnik and Brody distributions. respectively. 
In the U-function plot (b)  we see thaI the Brody fit is globally very good. (We do not show the 
Poissanian curve here.) 

p = 0.286~0.001, as shown in figure 3. The second assumption of statistical independence 
is accepted as valid and thus the reasoning leading to the factorization of the gap distribution 
is valid except that we now find not the Berry-Robnik distribution but the so-called Berry- 
Robnik-Brody (Prosen and Robnik 1994b) distribution instead 
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where Brody statistics have a gap distribution which can be expressed in terms of incomplete 
Gamma function Q 

B Li and M Robnik 

Indeed this phenomenological two-parameter distribution provides an excellent fit to our 
spectral data of 3000 consecutive levels as can be seen in figure 5, with the best-fit parameter 
values p1 = 0.309 and ,¶ = 0.370. They differ slightly from the ideal values p1 = 0.365 
and @ = 0.286 f 0.001. but are consistent with them, thereby confirming the statistical 
independence assumption. 

*16= 
Delta 

L 

Figure 4. The same as figure 2 but for the 1904 irregular levels. The best-fit parameter value 
is p, = 0.373 which is at variance with the ideal value 0, but is completely Consistent with the 
Berry-Rob& fit in figure 3. 

Nevertheless, just as a consistency check we can try to fit the spectrum with the Brody 
distribution and the Berry-Robnik distribution. The result is shown in figure 6 and the 
best-fit parameters are ,¶ = 0.166zt0.007 and p~ = 0.504, respectively. The fits are not bad 
and Brody is certainly better than Berry-Robnik as can be seen especially in the U-function 
plot. The conclusion is that as a consequence of the localization effects the entire spectrum 
is indeed best described by the Berry-Robnik-Brody dismbution fitted in figure 5. The 
value of x 2  in the latter is about three times smaller than in Brody and six times smaller 
than in Berry-Robnik. 

Finally we should mention that the best-fit Seligman-Verbaarschot (5) delta statistics 
fitted to the spectrum within the interval 0.9 -i L < 9.9, below the saturation region, give 
p~ = 0.472, which is consistent with the Berry-Robnik fit with p1 = 0.504 as explained 
above. For the sake of completeness we show the delta statistics in figure 7. 

Unlike the counting memure of regular levels the statistical measures of the spectral 
subsequences do not converge so uniformly and so fast. Calculating the level spacing 
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*lE1 
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3 

2 
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5 
.*. 
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*lo-1 s 
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U-ubrb 0 

-5 

-10 
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1 2 3 4 5 6 1 8 9  

m - 1  w 

Figure 5. The cumulative level spacing distribution ( a )  and U-function plot (b) of the total 3oW 
regular and inegular levels compared with the best-fit Berry-Robnik-Bmdy formula (8). In (a) 
the do& cwes represent the Poisson and GOE statisiics, The bold m e  is the numerical data, 
while the thin c w e  shows the best-fit Berry-Robnik-Bmdy distribution. The best-fit parameters 
are PI = 0.309 and p = 0.370. In (b) we show the U-function difference U(W) - U(WBRB) 
against W(S),  where Lib* = U(Ws*(S)) is the U-function of the Beny-Robnik-Brody. The 
bold curve represents numerical data and the noisy curves indicate the *la band. The quality 
of the fit is really excellent. However, the ideal values of pi and ~l would be PI  = 0.360 a n 4  
according to figure 3, B = 0.286. 

distribution and the delta statistics of an enlarged sample (namely 1000 more levels added 
on top to the block of 3MM levels) led actually to slightly worse results. 
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10 

5 

4' 
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1 2 3 4 5 6 7 8 9  
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Figure 6. The same as figure 3 but for lhe total 3000 levels. The best41 paramerer values are 
pi = 0.504 and f i  = 0.166 i 0.007. 

Finally, as promised, we would like to give additional aposterion' reasons for classifying 
the preliminary mixed-type states as regular. (i) Due to the strong localization any 
ambiguous mixed state is likely at least to mimic a regular state. (ii) After absorbing the 
mixed states into the set of regular ones the relative fraction of regular states p~ = 0.365 
agrees much better with the classical estimate pI = 0.360. (iii) The statistical measures 
( P ( S )  and A(L))  then also agree much better with Poisson statistics. (iv) The statistical 
measures of irregular sequence then agree notably better with the trend towards GOE in the 
sense that the Brody exponent fl  increases from f l  = 0.276 to p = 0.286. 
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L 

Figure 7. The same as figure 2 but for the total 3000 levels. ?he best-fit parameter value is 
PI  = 0.412. which is in complete agreement with the Berry-Rob& fit in figure 6. 

4. Discussions and conclusions 

The main goal of our present paper is to analyse a large sample of eigenstates of an 
autonomous Hamiltonian system sufficiently high in the semiclassical limit, and to perform 
the classification of the states into regular and irregular by examining their Husimi-type 
phase-space plots in correspondence with the classical surface of section plots. This plan 
has materialized in the specific choice of the Robnik billiard with the shape parameter 
A = 0.15, which is a --type system (the boundary is convex and analytic) with one large 
and dominating chaotic component with the relative phasespace volume (not SOS area) 
p2 = 0.640. We have pIotted 3000 consecutive states (from the 10 001 to the 13 000) in 
configuration and in phase space, and performed the said classification with the result that 
the relative fraction of regular states is equal to 0.365 which is in excellent agreement with 
the classical value p~ = 0.360 = 1 - p z .  Furthermore we have calculated the statistical 
measures (level spacing distribution and the delta statistics) for the regular and irregular 
sequence separately and also of the entire specmm. The aspects and assumptions of the 
Berry-Robnik (1984) approach have been confirmed, although we are not yet far enough 
in the semiclassical limit to see the GOE statistics for the irregular levels, while the regular 
levels are seen to obey the Poisson statistics very well. We believe that this is the first direct 
dynamical separation of regular and irregular levels in a generic system and the first such 
statistical analysis. It confirms the Percival’s (1973) classification scheme, the ingredients 
in the Berry-Robnik theory (1984) and the specific rigorous results on convex billiards by 
Lazutkin (1981,1991). It supports our claim that the Berry-Robnik (1984) theory is an 
asymptotically exact theory. One of the future projects should be in going further into 
the semiclassical limit for which new methods are needed, and one such might be the 
employment of the quantum Poincar.5 mapping (Bogomolny 1992, Schanz and Smilansky 
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1994, Prosen 1994a.b. 1995a-c). This might lead us to a direct demonstration of the 
applicability of the Berry-Robnik theory with high numerical and statistical significance, 
which so far was successful only in an abstract time-dependent Hamiltonian system, namely 
the compact standard map Cprosen and Robnik 1994a, b). 
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